Leveraging Submetered Electricity Loads to Disaggregate Household Water-Use

It is with great excitement to announce that Bradley Ellert successfully defended his Masters thesis on water disaggregation (NILM) last week. Titled Leveraging Submetered Electricity Loads to Disaggregate Household Water-Use, his thesis is now online for downloading. I helped mentor Bradley and provided advice for him on NILM and AMPds. I am very proud of the work he has done and we plan on working on some other NILM projects together int he near future. Here is the abstract of his thesis:

The world’s fresh water supply is rapidly dwindling. Informing homeowners of their water- use patterns can help them reduce consumption. Today’s ‘smart’ meters only show a whole house’s water consumption over time. People need to be able to see where they are using water most to be able to change their habits. The task of inferring the breakdown of water- use from smart meter data is called water disaggregation. Water disaggregation has been dominated by studies that rely on high-frequency data, proprietary meters, and/or labelled datasets. In contrast, this thesis uses low-frequency data from standardized meters and does not rely on labelled data. To accomplish this, we leverage information from non-intrusive load monitoring, the electricity counterpart of this task. We propose a modification of the Viterbi Algorithm that applies a supervised method to an unsupervised disaggregation problem. Using this, we are able to achieve mean squared errors of under 0.02 L2/min2.

Keywords: water disaggregation; water conservation; smart homes; sustainability

URL: https://theses.lib.sfu.ca/thesis/etd9156

Congratulations Bradley!

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s